ColdLogik Rear Door Cooling

The ColdLogik CL20 was the first intelligent rear door heat exchanger ‘RDHx’ – the original and best since 2007. It now boasts the most energy efficient low to high density rear door cooling solution currently available in the world.

  • Energy Saving
    Energy Saving
    Learn more
  • Carbon Reduction
    Carbon Reduction
    Learn more
  • Real Estate  Increase
    Real Estate Increase
    Learn more
  • Zero Water Use
    Zero Water Use
    Learn more
  • Operational Savings
    Operational Savings
    Learn more
  • Simple Design
    Simple Design
    Learn more
  • Modular & Retrofittable
    Modular & Retrofittable
    Learn more
  • Energy Saving
    Energy Saving
    • Energy Efficiency Ratio (EER) of over 100 at maximum capacity
    • Average 15% reclaimed power for Compute by comparison to traditional cooling
    • Potential Cooling PUE available of 1.035 with RDC
    • 3.5% ColdLogik Power to Cool 100% Heat Load vs 38% traditional methods
  • Carbon Reduction
    Carbon Reduction
    • Isolating Global Warming Potential (GWP) gasses to one centralised area
    • Reducing the volume of GWP gas significantly
    • Over 50,000 trees worth of carbon saved per 1MW ColdLogik deployment
  • Real Estate Increase
    Real Estate Increase
    • No need for supplementary Cooling
    • No area taken in the white space for coolant distribution
  • Zero Water Use
    Zero Water Use
    • Higher water temperatures reduce the need for mechanical cooling, whilst maintaining ASHRAE A1 temperatures
  • Simple Design
    Simple Design
    • Increase hardware lifespan by removing hot spots
    • Operates above dew point, no condensation management required with maintained humidity levels
    • Rapid ROI and lower cost of ownership
    • Vast reduction on Smart Hands
    • Requests (service tickets)
    • Increase computing capacity
      Save CapEx on building costs
  • Simple Design
    Simple Design
    • Plug and Play
    • Versatile deployment
    • No Supplementary cooling
    • Adaptive intelligence
    • No specialist hardware or infrastructure
    • Controls the whole room temperature
    • Fast-track Data Center planning
    • Deployment Strategy
  • Modular & Retrofittable
    Modular & Retrofittable
    • Scalable
    • Rapid Deployment
    • Suitable for both legacy or new build
    • environments
    • Future-proofing
    • Removal of raised floors and aisle containment
    • Compatible with both warm and cold water supply
Rear Door Coolers

How the ColdLogik Solution Works

<p><strong>Active</strong> RDHX</p>

Active RDHX

The multi award winning ColdLogik Rear Door method for cooling is best described by the term ‘Air Assisted Liquid Cooling’ or AALC for short.

AALC allows for the best of both worlds, enabling higher densities in standard data center designs and, bringing levels of efficiency that are truly capable of enabling change in your next retrofit or new build project.

Ambient air is drawn into the rack via the IT equipment fans. The hot exhaust air is expelled from the equipment and pulled over the heat exchanger assisted by EC fans mounted in the RDHx chassis. the exhaust heat transfers into the cooling fluid within the heat exchanger, and the newly chilled air is expelled into the room at, or just below, the predetermined room ambient temperature designed around sensible cooling.

Both processes are managed by the ColdLogik adaptive intelligence present in every Active RDHx, in this way the Rear Door Cooler uses air assisted liquid-cooling to control the whole room temperature automatically at is most efficient point.

<p><strong>Active</strong> RDHX</p>

ColdLogik Solution

ColdLogik RDHx enhance the efficiency of most data centers without the need for any changes to their current design. However, greater energy efficiencies are achievable when the complete ColdLogik solution is deployed.

By negating the heat at source, and removing the need for air mixing or containment, you gain the ability to significantly increase the supply water temperature, which means more efficient external heat rejection options become available. In some scenarios this means that the ColdLogik RDHx solution removed all compressor-based cooling therefore promoting the option to free cool all year round.

Resiliency Features

  • Up to N+4 on fans
  • A and B power feeds (ATS) as standard
  • Specifically designed PCB’s for enhanced functionality in the event of failure
  • Hot swappable fans
  • Universal fans reducing the need for localized resiliency stock
  • Leak prevention system available for deployment if requested
Rear Door Heat Exchangers

ColdLogik Rear Door Coolers vs Other Technologies​

The ColdLogik RDHx is unique in its proposition. It can efficiently service any duty range whilst offering resiliency in operation and, unrivalled flexibility when it comes to pairing with heat rejection equipment. This is all whilst negating 100% of the heat generated which is unique by comparison to other HPC deployment methods.​

img
Rear Door Coolers

Power Usage Effectiveness ‘PUE’

How ColdLogik Rear Door Heat Exchangers save energy​

Uptime and reliability have always driven data center design. However trade-offs have been made in order for comfort to be achieved for both the operators and equipment. The design maintains consistency and brings down the risk of error whilst also making the environment easily manageable.

Whilst data centers are more efficient than they have ever been on a whole, there is still a vast amount of improvement that can be made, in particular on both energy consumption for cooling and the consumption of water in the requirement for adiabatic cooling. ColdLogik Rear Door Heat Exchangersallow for unlocking the true potential of free cooling in every environment whilst looking after 100% of the heat generated at room level.

One of the major active equipment manufacturers has openly said that a realistic figure for water use per MW can be 68,000 litres of water a day. Unfortunately information is scarce and so a conservative figure of 1000mW can be used across the country, this would potentially give a usage of around 68 million litres of water per day.

  • USA
    USA
  • Northen Europe
    Northen Europe
  • Dublin
    Dublin
  • India
    India
  • China
    China
  • Energy Usage Comparison - Arizona

    In the following video we will discuss the energy usage of a traditional perimeter air conditioning unit, a high efficiency perimeter air conditioning unit and USystems Rear Door Heat Exchangers in Arizona.

  • Energy Usage Comparison - Oslo

    In the following video we will discuss the energy usage of a traditional unit, a high efficiency perimeter air conditioning unit and USystems Rear Door Heat Exchangers in Oslo.

  • Energy Usage Comparison - Dublin

    In the following video we will discuss the energy usage of a traditional unit, a high efficiency perimeter air conditioning unit and USystems Rear Door Heat Exchangers in Dublin.

  • Energy Usage Comparison - Pune

    In the following video we will discuss the energy usage of a traditional unit, a high efficiency perimeter air conditioning unit and USystems Rear Door Heat Exchangers in Pune.

  • Energy Usage Comparison - Beijing

    In the following video we will discuss the energy usage of a traditional unit, a high efficiency perimeter air conditioning unit and USystems Rear Door Heat Exchangers in Beijing.

Rear Door Coolers

Water Usage Effectiveness ‘WUE’​

How elevated water temperatures can dramatically reduce water temperatures

  • USA
    USA
  • Northen Europe
    Northen Europe
  • London-FLAP
    London-FLAP
  • India
    India
  • China
    China
  • What happens when you implement a ColdLogik Rear Door? In the graphs next to this you can see the marked difference between using a traditional cooling system, which is marked in yellow, and the ColdLogik cooling requirement, marked in grey. In the case of San Francisco and the Bay area its clear to see that by utilizing the traditional approach you would, on average, have a need for the adiabatic system all year round and you would also require mechanical assistance all year round in varying load. However, as most chillers have a minimum run of 25%, less free cooling could be available. By utilizing the ColdLogik door, on average, you would not need to use any additional water for 7 months of the year to provide adiabatic cooling, you would not require any mechanical assistance through the remaining 5 months either. Chillers would normally remain on site in order to provide redundancy on the rare occasions that a heat wave outside of the average occurs, however the chillers may not ever need to actually be run, causing an energy saving too.

    img

    With the current situation the world finds itself in one thing has become abundantly clear, data centers have provided people a safe haven in their own homes whilst lockdowns have been enforced across the globe, at one point half of the human race was in lockdown in one form or another.

    There have been both positives and negatives that have arisen from this though, from the ‘key worker’ status held by data center employees and their primary suppliers highlighting how governments across the world perceive the industry and its need, through to a sterner examination from the wider world on energy consumption and water usage.

    Uptime and reliability have always driven the major data center design philosophy, trade-offs have been made, understandably, in order for comfort to be achieved for the operators and owners to be safe in the knowledge that design and variability across sites maintains consistency and brings down the risk of misalignment or calculation.

    Whilst data centers are more efficient than they have ever been on a whole, there is still a vast amount of improvement that can be made, in particular on both energy consumption for cooling and the consumption of water in the requirement for adiabatic cooling.

    In 2014 Lawrence Berkeley National Laboratory in California issued a report that 639 billion liters of water were used in the USA alone on data center cooling, in 2020 the forecasted usage figure was predicted to be a startling 674 billion liters of water.

    What is adiabatic cooling?

    The reason that water is used in these data center cooling solutions is traditionally to obtain the lowest possible air temperature entering the external plant and therefore extracting as much of the heat from the data center using the natural environment before the mechanical chiller needs to be implemented.

    In any air content there are two temperature points, Dry Bulb (DB) and Wet Bulb (WB), the dry bulb is what you would feel if you were dry, the best way to describe wet bulb is when you walk out of the shower before you manage to get to the towel! The water on your body enables the air to reach the temperature of the relative humidity as you move through it, this is always equal to or lower than the DB temperature.

    img

    For example if the DB temperature in a room is 20°C/70°F and the WB temperature is 14°C/57°F then, if a wet object or air is pushed through a wet area or membrane the temperature would potentially reach the WB temperature, that is until the object is heated or dried.

    Why is this usage so high?

    The usage of water is inversely proportional to the water temperature flow to the data centre internal cooling equipment. The lower the temperature of the water flow into the data centre the higher the water usage by the external plant. Traditional plant has a normal water flow temperature of 7°C/45°F which means the highest temperature that you could potentially utilise naturally to get to the desired flow temperature is 5°C/41°F.

    How can you improve this usage?

    The best possible way to reduce the usage is to elevate the water temperature that the data centre requires in order to cool the equipment efficiently and effectively, the rear door cooler is a great example of this because, unlike traditional CRAC systems, instead of using colder air to mix with warm air to provide an ambient you are instead neutralising the air itself and therefore you can use a higher water temperature to obtain the same result. The graphs below show the average high temperature for DB and WB over a thirty year period.

    What happens when you implement a ColdLogik Rear Door?
    img
    img

    In the graphs above you can see the marked difference between using a traditional cooling system, which is marked in yellow, and the ColdLogik cooling requirement, marked in grey.

    In the case of San Francisco and the Bay area its clear to see that by utilising the traditional approach you would, on average, have a need for the adiabatic system all year round and you would also require mechanical assistance all year round in varying load. However, as most chillers have a minimum run of 25%, less free cooling could be available.

    By utilizing the ColdLogik door, on average, you would not need to use any additional water for 7 months of the year to provide adiabatic cooling, you would not require any mechanical assistance through the remaining 5 months either. Chillers would normally remain on site in order to provide redundancy on the rare occasions that a heat wave outside of the average occurs, however the chillers may not ever need to actually be run, causing an energy saving too.

    Conclusion

    In conclusion, without considering the lower water usage across the remaining 5 month which could be substantial, the ColdLogik door would likely be able to save a minimum of 58% additional water that would otherwise be consumed by the traditional cooling methods.

    Translating into physical water usage over the year this could drop the current projected figure of 674 billion litters of water down to 283 billion liters of water which is a 391 billion liter drop.

    This is the equivalent of filling 156,400 Olympic swimming pools which would take up an area 1.5 times that of San Francisco city.

    If you are looking to improve your water usage with a product that is tried and tested and deployed into the market worldwide then get in touch with USystems today.

    Conventional air cooling traditionally consumes significant energy when using mechanical chillers, one way to reduce and potentially eliminate the additional energy wastage is by utilising adiabatic cooling. Whilst significantly improving efficiencies on one hand this exponentially increases water usage in order to equip evaporative cooling. The major down side however is the growing scarcity of water in certain geographical locations. A typical large scale Data Center consumes an equivalent of 2,500 peoples water which is putting pressure on local governments in order to drop water usage.

    By utilising liquid cooling you can effectively increase the water temperature to the point where adiabatic cooling is no longer needed, giving the best of both worlds, no excess water wasted and better energy efficiency with a simpler site set up and requirement. It really is a WIN-WIN-WIN.

  • What happens when you implement a ColdLogik Rear Door? In the graphs next to this you can see the marked difference between using a traditional cooling system, which is marked in yellow, and the ColdLogik cooling requirement, marked in grey. In the case of Stockholm and the Nordics, its clear to see that by utilizing the traditional approach you would, on average, have a need for the adiabatic system most of the year and you would also require mechanical assistance in varying load. However, as most chillers have a minimum run of 25%, less free cooling could be available. By utilizing the ColdLogik door, on average, you would not need to use any additional water for 9 months of the year to provide adiabatic cooling, you would not require any mechanical assistance through the remaining 3 months either. Chillers would normally remain on site to provide redundancy on the rare occasions that a heat wave outside of the average occurs, however the chillers may not ever need to be run, causing an additional operational saving.

    img

    With the current situation the world finds itself in one thing has become abundantly clear, data centers have provided people a safe haven in their own homes whilst lockdowns have been enforced across the globe, at one point half of the human race was in lockdown in one form or another.

    There have been both positives and negatives that have arisen from this though, from the ‘key worker’ status held by data center employees and their primary suppliers highlighting how governments across the world perceive the industry and its need, through to a sterner examination from the wider world on energy consumption and water usage.

    Uptime and reliability have always driven the major data center design philosophy, trade-offs have been made, understandably, in order for comfort to be achieved for the operators and owners to be safe in the knowledge that design and variability across sites maintains consistency and brings down the risk of misalignment or calculation.

    Whilst data centers are more efficient than they have ever been on a whole, there is still a vast amount of improvement that can be made, in particular on both energy consumption for cooling and the consumption of water in the requirement for adiabatic cooling.
    One of the major active equipment manufacturers has openly said that a realistic figure for water use per MW can be 68,000 litres of water a day.

    Whilst public information is scarce a very conservative figure for water usage is around 20 million litres of water a day in the Nordics, utilised for cooling. However importantly a large proportion of data centre owners have utilised the areas climate to reduce the mechanical power requirement, which whilst increasing water usage will provide greater overall efficiency for traditional systems.

    What is adiabatic cooling?

    The reason that water is used in these data center cooling solutions is traditionally to obtain the lowest possible air temperature entering the external plant and therefore extracting as much of the heat from the data center using the natural environment before the mechanical chiller needs to be implemented.

    In any air content there are two temperature points, Dry Bulb (DB) and Wet Bulb (WB), the dry bulb is what you would feel if you were dry, the best way to describe wet bulb is when you walk out of the shower before you manage to get to the towel! The water on your body enables the air to reach the temperature of the relative humidity as you move through it, this is always equal to or lower than the DB temperature.

    For example if the DB temperature in a room is 20°C/70°F and the WB temperature is 14°C/57°F then, if a wet object or air is pushed through a wet area or membrane the temperature would potentially reach the WB temperature, that is until the object is heated or dried.

    Why is this usage so high?

    The usage of water is inversely proportional to the water temperature flow to the data centre internal cooling equipment. The lower the temperature of the water flow into the data centre the higher the water usage by the external plant. Traditional plant has a normal water flow temperature of 7°C/45°F which means the highest temperature that you could potentially utilise naturally to get to the desired flow temperature is 5°C/41°F.

    How can you improve this usage?

    The best possible way to reduce the usage is to elevate the water temperature that the data centre requires in order to cool the equipment efficiently and effectively, the rear door cooler is a great example of this because, unlike traditional CRAC systems, instead of using colder air to mix with warm air to provide an ambient you are instead neutralising the air itself and therefore you can use a higher water temperature to obtain the same result. The graphs below show the average high temperature for DB and WB over a thirty year period.

  • What happens when you implement a ColdLogik Rear Door? In the graphs next to this you can see the marked difference between using a traditional cooling system, which is marked in yellow, and the ColdLogik cooling requirement, marked in grey. In the case of London and the FLAP markets, its clear to see that by utilizing the traditional approach you would, on average, have a need for the adiabatic system most of the year and you would also require mechanical assistance in varying load. However, as most chillers have a minimum run of 25%, less free cooling could be available. By utilizing the ColdLogik door, on average, you would not need to use any additional water for 8 months of the year to provide adiabatic cooling, you would not require any mechanical assistance through the remaining 4 months either. Chillers would normally remain on site to provide redundancy on the rare occasions that a heat wave outside of the average occurs, however the chillers may not ever need to be run, causing an additional operational saving.

    img

    With the current situation the world finds itself in one thing has become abundantly clear, data centers have provided people a safe haven in their own homes whilst lockdowns have been enforced across the globe, at one point half of the human race was in lockdown in one form or another.

    There have been both positives and negatives that have arisen from this though, from the ‘key worker’ status held by data center employees and their primary suppliers highlighting how governments across the world perceive the industry and its need, through to a sterner examination from the wider world on energy consumption and water usage.

    Uptime and reliability have always driven the major data center design philosophy, trade-offs have been made, understandably, in order for comfort to be achieved for the operators and owners to be safe in the knowledge that design and variability across sites maintains consistency and brings down the risk of misalignment or calculation.

    Whilst data centers are more efficient than they have ever been on a whole, there is still a vast amount of improvement that can be made, in particular on both energy consumption for cooling and the consumption of water in the requirement for adiabatic cooling.
    One of the major active equipment manufacturers has openly said that a realistic figure for water use per MW can be 68,000 litres of water a day.

    Even if you only take the 13 largest data centre operations in the UK then this would equate to 58,412,000 litres of water that are wasted each day.

    What is adiabatic cooling?

    The reason that water is used in these data center cooling solutions is traditionally to obtain the lowest possible air temperature entering the external plant and therefore extracting as much of the heat from the data center using the natural environment before the mechanical chiller needs to be implemented.

    In any air content there are two temperature points, Dry Bulb (DB) and Wet Bulb (WB), the dry bulb is what you would feel if you were dry, the best way to describe wet bulb is when you walk out of the shower before you manage to get to the towel! The water on your body enables the air to reach the temperature of the relative humidity as you move through it, this is always equal to or lower than the DB temperature.

    For example if the DB temperature in a room is 20°C/70°F and the WB temperature is 14°C/57°F then, if a wet object or air is pushed through a wet area or membrane the temperature would potentially reach the WB temperature, that is until the object is heated or dried.

    Why is this usage so high?

    The usage of water is inversely proportional to the water temperature flow to the data centre internal cooling equipment. The lower the temperature of the water flow into the data centre the higher the water usage by the external plant. Traditional plant has a normal water flow temperature of 7°C/45°F which means the highest temperature that you could potentially utilise naturally to get to the desired flow temperature is 5°C/41°F.

    How can you improve this usage?

    The best possible way to reduce the usage is to elevate the water temperature that the data centre requires in order to cool the equipment efficiently and effectively, the rear door cooler is a great example of this because, unlike traditional CRAC systems, instead of using colder air to mix with warm air to provide an ambient you are instead neutralising the air itself and therefore you can use a higher water temperature to obtain the same result. The graphs below show the average high temperature for DB and WB over a thirty year period.

    img
    img

    As someone that lives in the UK I can safely say that our weather isn’t always the best, however this gives a wonderful opportunity for eliminating excess water use.

    The important factor here is that anything above the blue line can utilise the DB and therefore not require any additional water usage. Anything between the blue line and the orange line can be cooled using an adiabatic system and this is where the water usage would come into being. Anything beneath the orange line would require additional mechanical cooling such as a traditional chiller system, this would then be using maximum water and additional power for the mechanical equipment.

    What happens when you
    implement a ColdLogik rear door?

    img
    img

    In the graphs above you can see the marked difference between using a traditional cooling system, which is marked in yellow, and the ColdLogik cooling requirement, marked in grey.

    In the case of the United Kingdom and in particular the London area its clear to see that by utilising the traditional approach you would, on average, have a need for the adiabatic system all year round and you would also require mechanical for over half of the year in varying load. However, as most chillers have a minimum run of 25% making less of the free cooling available.

    By utilizing the ColdLogik door, on average, you would not need to use any additional water for 8 months of the year to provide adiabatic cooling, you would not require any mechanical assistance through the remaining 4 months either. Chillers would normally remain on site to provide redundancy on the rare occasions that a heat wave outside of the average occurs, however the chillers may not ever need to be run, causing an additional operational saving.

    Conclusion

    In conclusion, without considering the lower water usage across the remaining 4 months which could be substantial, the ColdLogik door would likely be able to save a minimum of 66% additional water that would otherwise be consumed by the traditional cooling methods.

    Translating into physical water usage over the year, and based on the 13 largest publicly available data centres in the UK, this could drop the current projected usage figure of 21.32 billion litres of water down to 7.11 billion litres of water which is a 14.21 billion litre drop. This is the equivalent of filling 5550 Olympic swimming pools which would take up an area more than 130 x that which Windsor castle and it’s grounds currently occupies.

    If you are looking to improve your water usage with a product that is tried and tested and deployed into the market worldwide then get in touch with USystems today.

    Conventional air cooling traditionally consumes significant energy when using mechanical chillers, one way to reduce and potentially eliminate the additional energy wastage is by utilising adiabatic cooling. Whilst significantly improving efficiencies on one hand this exponentially increases water usage in order to equip evaporative cooling. The major down side however is the growing scarcity of water in certain geographical locations. A typical large scale Data Center consumes an equivalent of 2,500 peoples water which is putting pressure on local governments in order to drop water usage.

    By utilising liquid cooling you can effectively increase the water temperature to the point where adiabatic cooling is no longer needed, giving the best of both worlds, no excess water wasted and better energy efficiency with a simpler site set up and requirement. It really is a WIN-WIN-WIN.

  • What happens when you implement a ColdLogik Rear Door? In the graphs next to this you can see the marked difference between using a traditional cooling system, which is marked in yellow, and the ColdLogik cooling requirement, marked in grey. In the case of Bangalore and the Indian market, its clear to see that by utilizing the traditional approach you would, on average, have a need for the adiabatic system most of the year and you would also require mechanical assistance in varying load. However, as most chillers have a minimum run of 25%, less free cooling could be available. By utilizing the ColdLogik door, on average, you would not require any additional mechanical cooling on site for standard operation. This is in the form of chillers with refrigeration circuits, whilst normally these systems would remain on site in order to maintain redundancy in case of exceptional need they would not be required on a regular basis. The water usage would be less for 6 months of the year on the ColdLogik system, this would most likely account for a drop in water usage across this period of around 20%.

    img

    With the current situation the world finds itself in one thing has become abundantly clear, data centers have provided people a safe haven in their own homes whilst lockdowns have been enforced across the globe, at one point half of the human race was in lockdown in one form or another.

    There have been both positives and negatives that have arisen from this though, from the ‘key worker’ status held by data center employees and their primary suppliers highlighting how governments across the world perceive the industry and its need, through to a sterner examination from the wider world on energy consumption and water usage.

    Uptime and reliability have always driven the major data center design philosophy, trade-offs have been made, understandably, in order for comfort to be achieved for the operators and owners to be safe in the knowledge that design and variability across sites maintains consistency and brings down the risk of misalignment or calculation.

    Whilst data centers are more efficient than they have ever been on a whole, there is still a vast amount of improvement that can be made, in particular on both energy consumption for cooling and the consumption of water in the requirement for adiabatic cooling.

    One of the major active equipment manufacturers has openly said that a realistic figure for water use per MW can be 68,000 litres of water a day.

    Whilst public information is scarce a very conservative figure for water usage is around 34 million litres of water a day in the Indian market, utilised for cooling based on 500mW cooling capacity across the country.

    What is adiabatic cooling?

    The reason that water is used in these data center cooling solutions is traditionally to obtain the lowest possible air temperature entering the external plant and therefore extracting as much of the heat from the data center using the natural environment before the mechanical chiller needs to be implemented.

    In any air content there are two temperature points, Dry Bulb (DB) and Wet Bulb (WB), the dry bulb is what you would feel if you were dry, the best way to describe wet bulb is when you walk out of the shower before you manage to get to the towel! The water on your body enables the air to reach the temperature of the relative humidity as you move through it, this is always equal to or lower than the DB temperature.

    For example if the DB temperature in a room is 20°C/70°F and the WB temperature is 14°C/57°F then, if a wet object or air is pushed through a wet area or membrane the temperature would potentially reach the WB temperature, that is until the object is heated or dried.

    Why is this usage so high?

    The usage of water is inversely proportional to the water temperature flow to the data centre internal cooling equipment. The lower the temperature of the water flow into the data centre the higher the water usage by the external plant. Traditional plant has a normal water flow temperature of 7°C/45°F which means the highest temperature that you could potentially utilise naturally to get to the desired flow temperature is 5°C/41°F.

    How can you improve this usage?

    The best possible way to reduce the usage is to elevate the water temperature that the data centre requires in order to cool the equipment efficiently and effectively, the rear door cooler is a great example of this because, unlike traditional CRAC systems, instead of using colder air to mix with warm air to provide an ambient you are instead neutralising the air itself and therefore you can use a higher water temperature to obtain the same result. The graphs below show the average high temperature for DB and WB over a thirty year period.

    img
    img

    As you can see above India provides a challenging environment for any cooling requirement, with high DB temperatures and relatively high WB temperatures to suit.

    The important factor here is that anything above the blue line can utilise the DB and therefore not require any additional water usage. Anything between the blue line and the orange line can be cooled using an adiabatic system and this is where the water usage would come into being. Anything beneath the orange line would require additional mechanical cooling such as a traditional chiller system, this would then be using maximum water and additional power for the mechanical equipment.

    What happens when you implement a ColdLogik rear door?
    img
    img

    In the graphs above you can see the marked difference between using a traditional cooling system, which is marked in yellow, and the ColdLogik cooling requirement, marked in grey.

    In India its clear to see that by utilising the traditional approach you would, on average, have a need for the adiabatic system for the whole year and you would also require mechanical for the whole year in varying load. However, as most chillers have a minimum run of 25% less free cooling may be used.

    By utilizing the ColdLogik door, on average, you would not require any additional mechanical cooling on site for standard operation. This is in the form of chillers with refrigeration circuits, whilst normally these systems would remain on site in order to maintain redundancy in case of exceptional need they would not be required on a regular basis. The water usage would be less for 6 months of the year on the ColdLogik system, this would most likely account for a drop in water usage across this period of around 20%.

    Conclusion

    In conclusion, considering the lower water usage across the 6 months, the ColdLogik door would likely be able to save a minimum of 10% additional water that would otherwise be consumed by the traditional cooling methods.

    Translating into physical water usage over the year, and based on the publicly available information for India, this could drop the current projected usage figure of 12.37 billion litres of water down to 11.13 billion litres of water which is a 10% drop. In the future, as the Ashrae guidelines are pushed more into the allowable limits, the amount of water that could be saved is limitless.

    If you are looking to improve your water usage with a product that is tried and tested and deployed into the market worldwide then get in touch with USystems today.

    Conventional air cooling traditionally consumes significant energy when using mechanical chillers, one way to reduce and potentially eliminate the additional energy wastage is by utilising adiabatic cooling. Whilst significantly improving efficiencies on one hand this exponentially increases water usage in order to equip evaporative cooling. The major down side however is the growing scarcity of water in certain geographical locations. A typical large scale Data Center consumes an equivalent of 2,500 peoples water which is putting pressure on local governments in order to drop water usage.

    By utilising liquid cooling you can effectively increase the water temperature to the point where adiabatic cooling is no longer needed, giving the best of both worlds, no excess water wasted and better energy efficiency with a simpler site set up and requirement. It really is a WIN-WIN-WIN.

  • What happens when you implement a ColdLogik Rear Door? In the graphs next to this you can see the marked difference between using a traditional cooling system, which is marked in yellow, and the ColdLogik cooling requirement, marked in grey. In the case of Bangalore and the Indian market, its clear to see that by utilizing the traditional approach you would, on average, have a need for the adiabatic system most of the year and you would also require mechanical assistance in varying load. However, as most chillers have a minimum run of 25%, less free cooling could be available. By utilizing the ColdLogik door, on average, you would not need to use any additional water for 6 months of the year to provide adiabatic cooling, you would only require mechanical cooling assistance for around 1-2 months. Chillers would normally remain on site to provide redundancy on the rare occasions that a heat wave outside of the average occurs, however the chillers may not need to be run for 10 months of the year, causing an additional operational saving

    img

    With the current situation the world finds itself in one thing has become abundantly clear, data centers have provided people a safe haven in their own homes whilst lockdowns have been enforced across the globe, at one point half of the human race was in lockdown in one form or another.

    There have been both positives and negatives that have arisen from this though, from the ‘key worker’ status held by data center employees and their primary suppliers highlighting how governments across the world perceive the industry and its need, through to a sterner examination from the wider world on energy consumption and water usage.

    Uptime and reliability have always driven the major data center design philosophy, trade-offs have been made, understandably, in order for comfort to be achieved for the operators and owners to be safe in the knowledge that design and variability across sites maintains consistency and brings down the risk of misalignment or calculation.

    Whilst data centers are more efficient than they have ever been on a whole, there is still a vast amount of improvement that can be made, in particular on both energy consumption for cooling and the consumption of water in the requirement for adiabatic cooling.

    One of the major active equipment manufacturers has openly said that a realistic figure for water use per MW can be 68,000 litres of water a day.

    Unfortunately information is scarce and so a conservative figure of 1000mW can be used across the country, this would potentially give a usage of around 68 million litres of water per day.

    What is adiabatic cooling? Design smarter Jump straight into layout ideas and content hierarchy instead of worrying what radius to apply to a button every time you start a new project. 30 day free trial No cookie notice required GDPR compliant

    The reason that water is used in these data center cooling solutions is traditionally to obtain the lowest possible air temperature entering the external plant and therefore extracting as much of the heat from the data center using the natural environment before the mechanical chiller needs to be implemented.

    In any air content there are two temperature points, Dry Bulb (DB) and Wet Bulb (WB), the dry bulb is what you would feel if you were dry, the best way to describe wet bulb is when you walk out of the shower before you manage to get to the towel! The water on your body enables the air to reach the temperature of the relative humidity as you move through it, this is always equal to or lower than the DB temperature.

    For example if the DB temperature in a room is 20°C/70°F and the WB temperature is 14°C/57°F then, if a wet object or air is pushed through a wet area or membrane the temperature would potentially reach the WB temperature, that is until the object is heated or dried.

    Why is this usage so high?

    The usage of water is inversely proportional to the water temperature flow to the data centre internal cooling equipment. The lower the temperature of the water flow into the data centre the higher the water usage by the external plant. Traditional plant has a normal water flow temperature of 7°C/45°F which means the highest temperature that you could potentially utilise naturally to get to the desired flow temperature is 5°C/41°F.

    How can you improve this usage?

    The best possible way to reduce the usage is to elevate the water temperature that the data centre requires in order to cool the equipment efficiently and effectively, the rear door cooler is a great example of this because, unlike traditional CRAC systems, instead of using colder air to mix with warm air to provide an ambient you are instead neutralising the air itself and therefore you can use a higher water temperature to obtain the same result. The graphs below show the average high temperature for DB and WB over a thirty year period.

    img
    img

    As you can see above China provides a challenging environment for any cooling requirement, particularly in summer, with high DB temperatures and relatively high WB temperatures to suit.

    The important factor here is that anything above the blue line can utilise the DB and therefore not require any additional water usage. Anything between the blue line and the orange line can be cooled using an adiabatic system and this is where the water usage would come into being. Anything beneath the orange line would require additional mechanical cooling such as a traditional chiller system, this would then be using maximum water and additional power for the mechanical equipment.

    What happens when you implement a ColdLogik rear door? Design smarter Jump straight into layout ideas and content hierarchy instead of worrying what radius to apply to a button every time you start a new project. 30 day free trial No cookie notice required GDPR compliant
    img
    img

    In the graphs above you can see the marked difference between using a traditional cooling system, which is marked in yellow, and the ColdLogik cooling requirement, marked in grey.

    In China its clear to see that by utilising the traditional approach you would, on average, have a need for the adiabatic system for almost the whole year and you would also require mechanical for half the year in varying load. However, as most chillers have a minimum run of 25% less of the free cooling may be available

    By utilizing the ColdLogik door, on average, you would not need to use any additional water for 6 months of the year to provide adiabatic cooling, you would only require mechanical cooling assistance for around 1-2 months. Chillers would normally remain on site to provide redundancy on the rare occasions that a heat wave outside of the average occurs, however the chillers may not need to be run for 10 months of the year, causing an additional operational saving.

    Conclusion

    In conclusion, without considering the lower water usage across the remaining 4 months which could be substantial, the ColdLogik door would likely be able to save a minimum of 25% additional water that would otherwise be consumed by the traditional cooling methods.

    Translating into physical water usage over the year, and based on the conservative 1tW figure, this could drop the current projected usage figure of 24.82 billion litres of water down to 18.6 billion litres of water which is a 6.2 billion litre drop. This is the equivalent of filling the Birds nest stadium in Beijing with water twice over which was the pinnacle of the 2008 Olympic games.

    If you are looking to improve your water usage with a product that is tried and tested and deployed into the market worldwide then get in touch with USystems today.

    Conventional air cooling traditionally consumes significant energy when using mechanical chillers, one way to reduce and potentially eliminate the additional energy wastage is by utilising adiabatic cooling. Whilst significantly improving efficiencies on one hand this exponentially increases water usage in order to equip evaporative cooling. The major down side however is the growing scarcity of water in certain geographical locations. A typical large scale Data Center consumes an equivalent of 2,500 peoples water which is putting pressure on local governments in order to drop water usage.

    By utilising liquid cooling you can effectively increase the water temperature to the point where adiabatic cooling is no longer needed, giving the best of both worlds, no excess water wasted and better energy efficiency with a simpler site set up and requirement. It really is a WIN-WIN-WIN.

Rear Door Heat Exchanger

Deployment Strategies​

This section covers USystems recommendations for deploying ColdLogik RDHx into both legacy and new build data centers​

  • ColdLogik RDHx  are fully retrofittable onto any OEM Rack
  • RDHx can use the return water from the existing perimeter room cooling and chiller system
  • RDHx can be top and bottom fed as standard
  • RDHx do not affect baying racks on either side
  • Full rear access to rack
  • Can be retrofitted to Hot Aisle Containment System, without need to change floor layout
  • RDHx are the only retrofittable solution capable of achieving all the restrictive issues within legacy data centers
  • Increased floorspace for Cabinet deployment

External cooling options at a glance​

ColdLogik RDHx enable the use of transformative technology, unlocking the potential of free cooling. Giving freedom to choose the right technology to suit the local climate, which is vitally important. ​

Below you will see a range of options, detailing free cooling capability, water usage and PUE making it easy to pick what is best for your next deployment depending on location.​

img
img

Related Products

USystems

Data Center Solutions that Exceed Expectations

Get in touch with us at USystems Ltd to join the journey towards more efficient and sustainable data centers. Our leading and innovative technologies are designed to help you use less energy and reduce your carbon footprint on a global scale. Contact us now to explore how we can work together for a greener future.